Nanomaterials processing toward large-scale flexible/stretchable electronics
نویسندگان
چکیده
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Abstract Nanomaterials processing toward large-scale flexible/stretchable electronics In recent years, there has been tremendous progress in large-scale mechanically flexible electronics, where electrical components are fabricated on non-crystalline substrates such as plastics and glass. These devices are currently serving as the basis for various applications such as flat-panel displays, smart cards, and wearable electronics. In this thesis, a promising approach using chemically synthesized nanomaterials is explored to overcome various obstacles current technology faces in this field. Here, we use chemically synthesized semiconducting nanowires (NWs) including group IV (Si, Ge), III-V (InAs) and II-IV (CdS, CdSe) NWs, and semiconductor-enriched SWNTs (99 % purity), and developed reliable, controllable, and more importantly uniform assembly methods on 4-inch wafer-scale flexible substrates in the form of either parallel NW arrays or SWNT random networks, which act as the active components in thin film transistors (TFTs). Thusly obtained TFTs composed of nanomaterials show respectable electrical and optical properties such as 1) cutoff frequency, f t ~ 1 GHz and maximum frequency of oscillation, f max ~ 1.8 GHz from InAs parallel NW array TFTs with channel length of ~ 1.5 µm, 2) photodetectors covering visible wavelengths (500-700 nm) using compositionally graded CdS x Se 1-x (0 < x < 1) parallel NW arrays, and 3) carrier mobility of ~ 20 cm 2 /Vs, which is an order of magnitude larger than conventional TFT materials such as a-Si and organic semiconductors, without sacrificing current on/off ratio (I on /I off ~ 10 4) from SWNT network TFTs. 2 The capability to uniformly assemble nanomaterials over large-scale flexible substrates enables us to use them for more sophisticated applications. Artificial electronic skin (e-skin) is demonstrated by laminating pressure sensitive rubber on top of nanomaterial-based active matrix backplanes. Furthermore, an x-ray imaging device is also achieved by combining organic photodiodes with this backplane technology. i To my family and everyone else whom I've had the privilege of running into from birth to present day.
منابع مشابه
Stretchable and transparent electrodes based on in-plane structures.
Stretchable electronics has attracted great interest with compelling potential applications that require reliable operation under mechanical deformation. Achieving stretchability in devices, however, requires a deeper understanding of nanoscale materials and mechanics beyond the success of flexible electronics. In this regard, tremendous research efforts have been dedicated toward developing st...
متن کاملScalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors
New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is rea...
متن کاملInorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics
Rapid advances in semiconductor nanomaterials, techniques for their assembly, and strategies for incorporation into functional systems now enable sophisticated modes of functionality and corresponding use scenarios in electronics that cannot be addressed with conventional, wafer-based technologies. This short review highlights enabling developments in the synthesis of oneand two-dimensional sem...
متن کاملCarbon Nanotube Flexible and Stretchable Electronics
The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus...
متن کاملA theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing
Transfer printing is an important and versatile tool for deterministic assembly and integration of micro/nanomaterials on unusual substrates, with promising applications in fabrication of stretchable and flexible electronics. The shape memory polymers (SMP) with triangular surface relief structures are introduced to achieve large, reversible adhesion, thereby with potential applications in temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013